

Study for the determination of Cd, Pb and Zn in biological fluids by Inductively Coupled Plasma Mass Spectrometry

Monica Ursu¹, Maria Paul¹, Marin Șenilă¹, Tiberiu Frențiu², Mircea Chintoanu¹, Claudiu Tănăselia¹

¹Institutul de Cercetări pentru Instrumentație Analitică, Cluj-Napoca

²Facultatea de Chimie și Inginerie Chimică, Universitatea Babeș-Bolyai, Cluj-Napoca, Institutul de Cercetări pentru Instrumentație Analitică, Cluj-Napoca

•Developing high sensitivity analysis method for Cd, Cu, Pb and Zn determination from clinical samples (urine and whole blood)

•Study of polyatomic interferences removal using dynamic reaction cell method (with methane as a reaction gas)

 Determination of analytical performance of the method used, by analysis of certified reference materials

³⁹K₂¹⁶O⁺ 95_M,¹⁶O⁺ 947,¹⁶O¹H⁺ ³⁹K,¹⁶O,¹H⁺ ¹¹⁰Cd 12.5

The instrument used for determination was a ICP-MS Perkin-Elmer Elan DRC II with methane as a reaction gas for DRC determination.

Instrumental parameters					
RF power Nebulizer gas flow Lens Voltage Sample flow Analog Voltage	1168 W 0.931 min ⁻¹ 5.50 V 0.80 m1 min ⁻¹ - 1800 V				

Data aquisition parameters

Mode	Peak hopping
Peak points	1
Read / point	20
Aquisition time (ms)	50
Integration time (ms)	1000
Replicates	3

CRMs

- For the method developing, we've used certified reference
- materials for biological fluids, from the next

- The signal and also the concentration in stadard mode is higher than in standard mode because of the interference. When still using internal standards, this difference in signal strength can be seen.
- For background evaluation determination we used Millipore deionized water with 1% nitric acid. Also, the parameters of the Elan DRC II were is the specification: the vacuum value and the signal intesities for etalons.

CRM Urine 05404 level 2								
Elem ent	Isoto pe	ppb concentratio	CRM conc. (ppb)					
		without DRC	with DRC					
Cd	¹¹⁰ Cd	$\begin{array}{ccc} 11.77 & \pm \\ 0.30 \end{array}$	10.33 ± 0.40	8.00 ± 1.86				
	¹¹¹ Cd	11.39 ± 0.20	9.30 ± 0.10					
	¹¹² Cd	$\begin{array}{ccc} 9.62 & \pm \\ 0.30 & \end{array}$	8.83 ± 0.10					
	^{113}Cd 11.34 ± 0.10		8.75 ± 0.30					
	¹¹⁴ Cd	9.21 ± 0.10	8.85 ± 0.20					
Cu	⁶³ Cu	256 ± 24	303 ± 18	250 ± 60				
	⁶⁵ Cu	256 ± 29	286 ± 17					
Pb	²⁰⁶ Pb	124 ± 35	103 ± 25	80 ± 18				
	²⁰⁷ Pb	121 ± 20	105 ± 27					
	²⁰⁸ Pb	122 ± 18	106 ± 22					
Zn	⁶⁴ Zn	856 ± 59	805 ± 47	800 ± 200				
	⁶⁶ Zn	840 ± 70	805 ± 52					
	⁶⁸ Zn	836 ± 34	812 ± 34					

- The method developed for urine analysis based on 1+9 dilution with HNO₃ 1% and blood 1+19 diluted with Triton-X 0.5% is suitable for direct determination oh heavy metals in clinical samples using ICP-MS method.
- Polyatomical interferences on Pb and Zn cand be eleminiating by using Dynamica Reaction Chamber with methane as reaction gas.
- DRC with methane gas is not suitable for interference removal of Cu compounds because of the carbon ions that results in the chamber. This should be further investigated using amonia instead of methane as a reaction gas.

Ca	12.0	MO-O, -21-O-H, - K2-O2-H
¹¹² Cđ	24.1	⁴⁰ Ca ₂ ¹⁶ O ₂ ⁺ , ⁴⁰ Ar ₂ ¹⁶ O ₂ ⁺ , ⁹⁶ Ru ¹⁶ O ⁺
¹¹³ Cd	12.22	⁹⁶ Ru ¹⁶ O ¹ H ⁺ , ⁴⁰ Ca ₂ ¹⁶ O ₂ ¹ H ⁺ , ⁴⁰ Ar ₂ ¹⁶ O ₂ ¹ H ⁺ , ⁹⁶ Ru ¹⁶ O ¹ H ⁺ , ⁹⁶ Ru ¹⁷ O ⁺
114Cd	28.7	⁹⁸ Mo ¹⁶ O ⁺ , ⁹⁸ Ru ¹⁶ O ⁺
¹¹⁶ Cd	7.49	¹⁰⁰ Ru ¹⁶ O ⁺
⁶³ Cu	69.1	³¹ P ¹⁶ O ₂ ⁺ , ⁴⁰ Ar ²³ Na ⁺ , ⁴⁷ Ti ¹⁶ O ⁺ , ²³ Na ⁴⁰ Ca ⁺ , ⁴⁶ Ca ¹⁶ O ¹ H ⁺ ,
		³⁶ Ar ¹² C ¹⁴ N ¹ H ⁺ , ¹⁴ N ¹² C ³⁷ Cl ⁺ , ¹⁶ O ¹² C ³⁵ Cl ⁺
⁶⁵ Cu	30.9	$^{49}\text{Ti}^{16}\text{O}^+$, $^{32}\text{S}^{16}\text{O}_2^1\text{H}^+$, $^{40}\text{Ar}^{25}\text{Mg}^+$, $^{46}\text{Ca}^{18}\text{O}^1\text{H}^+$, $^{36}\text{Ar}^{14}\text{N}_2^1\text{H}^+$,
		³² S ³³ S ⁺ , ³² S ¹⁶ O ¹⁷ O ⁺ , ³³ S ¹⁶ O ₂ ⁺ , ¹² C ¹⁶ O ³⁷ Cl ⁺ , ¹² C ¹⁸ O ³⁵ Cl ⁺
²⁰⁶ РЪ	24.1	¹⁹⁰ Pt ¹⁶ O ⁺
²⁰⁷ Pb	22.1	¹⁹¹ Ir ¹⁶ O ⁺
²⁰⁸ Pb	52.4	¹⁹² Pt ¹⁶ O ⁺
⁶⁴ Zn	48.89	$3^{2}S^{16}O_{2}^{+}, \ ^{48}T_{i}^{16}O^{+}, \ ^{31}P^{16}O_{2}^{1}H^{+}, \ ^{48}C_{a_{2}}^{16}O^{+}, \ ^{31}P^{17}O^{16}O^{+}, \ ^{34}S^{16}O_{2}^{+},$
		³⁶ Ar ¹⁴ N ₂ +
⁶⁶ Zn	27.81	50 Ti ¹⁶ O ⁺ , 34 S ¹⁶ O ₂ ⁺ , 33 S ¹⁶ O ₂ ¹ H ⁺ , 32 S ¹⁶ O ¹⁸ O ⁺ , 32 S ¹⁷ O ₂ ⁺ , 33 S ¹⁶ O ¹⁷ O ⁺ ,
		³² S ³⁴ S ⁺ , ³³ S ₂ ⁺
⁶⁸ Zn	18.57	$36S^{16}O_2^+$, $34S^{16}O^{18}O^+$, $40Ar^{14}N_2^+$, $35C1^{16}O^{18}O^+$, $34S_2^+$, $36Ar^{32}S^+$,
		³⁴ S ¹⁷ O ₂ ⁺ , ³³ S ¹⁷ O ¹⁸ O ⁺ , ³² S ¹⁸ O ₂ ⁺ , , ³² S ³⁶ S ⁺

suppliers:

- Urine CRM (SERO AS Norway):
- A SERONOM 201205 level 2 lot no. 02525
- e SERONOM 201305 blank lot OK4636

LGC Prochem Germany

- a Control level 2-05404
- 0 Control level 1-05403 (Medichem)
- 0 Blood CRM:
- U SERONOM 201605 Trace Elements Whole Blood L2 Lot. No. 0503109

Used reagents:

- Deionized water Milli-Q, Millipore
- M Ultrapure nitric acid 60%, Merck Monoelement standard solutions 1000ppm
- containing Cd, Cu, Pb, Zn (Merck)
- U Triton X-100 1% v/v (Merck K Ga A)
- V Methane (99.9995%) for reaction gas

Urine sample was diluted 1+9 in 100ul HNO3 60%. Following concentration were added: Cd 0.5 (1) Cu 5 (10) Pb 5 (10) Zn 50 (100). For blood, we used 1+19 dilution with Triton X-100 1% and the same concentrations.

CRM Urine	Cd		Cu		Pb		Zn	
	М	CRM	М	CRM	М	CRM	М	CRM
SERON ORM 201205	5.05 ± 0.10	5.06 ± 0.22	18.6 ± 0.3	16.1 ± 1.4	85.9 ± 4.2	91.1± 7.0	259 ± 17	$\begin{array}{cc} 261 & \pm \\ 13 \end{array}$
05403	13.02 ± 0.25	13.00 ± 3.00	49.5 ± 5.6	50.0 ± 14.8	98±1 0	$\begin{array}{rrr} 130 & \pm \\ 32 \end{array}$	144 5 ± 74	$\begin{array}{r} 1300 \\ 400 \end{array} \pm$
05404	9.21 ±	$\begin{array}{r} 8.00 \\ 1.86 \end{array} \pm$	$\begin{array}{rrr} 256 & \pm \\ 29 \end{array}$	250 ± 60	103 ± 25	$\begin{array}{rrr} 80 & \pm \\ 18 \end{array}$	807 ±	$\begin{array}{rrr} 800 & \pm \\ 200 \end{array}$

The method we developed stands for high sensitivity and allows determination of concentration in the range of ppt (parts per trillion) from chemical samples with low salts content (Cd -20 ppt, Cu -60 ppt, Pb – 90 ppt, Zn – 60 ppt)

Fig 1. Quadrupole chamber (foreground) and DRC (background)

Fig. 2. Perkin-Elmer Elan DRC II with qudrupole region in foreground.

ANALIICAL	
-----------	--

PERF	ORM	IANCE	
	LOD/ppt	RPq	

Cd110	9	0.3	
Cd111	6	0.45	
Cd112	5	0.35	
Cd113	4	0.25	
Cd114	4	0.35	
Cu63	12	0.45	
Cu65	20	0.6	
Pb206	29	0.35	
Pb207	25	0.55	
Pb208	16	0.60	
Zn64	12	0.45	
Zn66	20	0.45	
Zn68	17	0.45	

		0.50				40		
	OK4636		$\begin{array}{r} 19.0 \\ 1.4 \end{array}$	$\begin{array}{rrr} 18.6 & \pm \\ 2.1 \end{array}$		384 ± 25	$\begin{array}{rrr} 393 & \pm \\ 28 \end{array}$	

				-			
М	CRM	М	CRM	М	CRM	М	CRM
5.8 ± 0.1	$\begin{array}{cc} 6.0 & \pm \\ 0.4 \end{array}$	684± 36	666 ± 29	$\begin{array}{rr} 402 & \pm \\ 33 \end{array}$	393 ± 21	5304 ± 174	5038 ± 369

Whole blood determination results

Fig. 3: DRC opened (detail).

Pentru informații suplimentare:

INCDO-INOE 2000 Institutul de Cercetări pentru Instrumentație Analitică, ICIA Str. Donath 67, Cluj-Napoca 400293. E-mail: icia@icia.ro