

Feature extraction methods for the classification of grape leaves **Author: Stefania BARBURICEANU**

I. Introduction

Humans process visual information faster and easier than they process text - the field of image processing has evolved in the last years and now it is successfully used in different domains: medical imaging, industrial inspection, remote sensing. Regardless of the specific domain or application, the supervised image classification includes two steps: training and actual classification, both involving two techniques: feature extraction and machine learning classification.

Figure 1. Supervised image classification block scheme

Feature extraction:

- Is used in almost all machine-learning algorithms;
- Involves extracting information from raw data;
- Has a strong influence on the performance of the classification

Figure 2. Properties of the extacted features

Plant disease detection and classification:

- Diseases cause a decrease in productivity and quality of agricultural products;
- It is necessary to detect diseases in order to take the best measures;
- Machine learning methods can prove to be helpful for the classification and identification of plant diseases.

II. Proposed method

Gray-level images: use textural information

- Apply the MRELBP (Median Robust Extended Local Binary Patterns) technique for the classification of grape leaves diseases;
- Use the proposed operator: BM3DELBP (Block Matching and 3D Filtering • Extended Local Binary Pattern) for obtaining better noise robustness.

Aim:

- Develop new feature extraction methods that work in the RGB colour space;
- Study the potential contribution of colour information for increasing the accuracy for the classification of grape leaf diseases.

RGB images: use texture and colour information

- Extension of the proposed methods to colour; •
- New operators are labelled: OCMRELBP (Opponent Colour MRELBP) and **OCCBM3DELBP** (Opponent Colour Colour-Block Matching and 3D filtering

Opponent colour idea: Application of the operator on each colour channel independently and on pairs of colour channels

3 intra-channel histograms

3 inter-channel histograms

joint texture colour descriptor

concatenation

Figure 3. Opponent colour idea

- Three components are calculated for each channel pair combination: • OCMRELBP_CI, OCMRELBP_NI and OCMRELBP_RD;
- For each colour channel a joint histogram is built by combining the codes \bullet obtained from the three components; the resulting joint histograms are then concatenated;
- These steps were considered for all scales of interest (radii 2,4,6 and 8);
- To extend the BM3DELBP operator to colour images, the colour version of the • BM3D filter is used and the opponent colour approach is applied in the same manner.

	QCMI	RELBP_RD_GB				OCMRELBP
			 	' 	OCMRELBP radius 4	
			 		OCMRELBP radius 6	
			 		OCMRELBP radius 8	

Figure 4. The OCMRELBP operator block scheme

III. Experimental results

Database used

- Images of healthy and diseased grape leaves;
- Different illumination conditions, rotations;
- 70% of the samples training and 30% testing; •
- 40 tests corresponding to random partitions of the training and test sets.

Results

Table I. Classification accuracy [%] for noise-free images

Average accuracy
93.19 <u>+</u> 0.65
93.66±0.52
98.18 <u>+</u> 0.37
98.32±0.43

IV. Conclusions

- Promising results;
- Textural information is relevant for this classification problem;
- Colour information brings improvements in the classification accuracy. •

Grape leaves affected by Black Rot	1180
Grape leaves affected by Black Measles - Esca	1384
Grape leaves affected by	
Isariopsis Leaf Spot – Leaf	1076
blight	
Healthy grape leaves	423

Figure 5. Examples of grape leaves: a) affected by Black Rot b) affected by Black Measles c) affected by Isariopsis d) healthy

Table II. Classification accuracy [%] for noisy images

Operator	Average accuracy
MRELBP	89.30±0.75
BM3DELBP	92.25 ± 0.64
OCCBM3DELBP	97.76±0.37

Acknowledgment

This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017 0251/4PCCDI/2018, within PNCD III.