Cod proiect

Contract nr: 48 / 2018


Recovery of Precious Metals from Spent Catalysts by Supercritical CO2 Extraction Assisted by Polymers




4 – Eco-nano-technologies and advanced materials


SUPERMET project proposes to explore an eco-friendly disruptive technology for the recycling of precious metals, especially palladium (Pd) and platinum (Pt), from spent catalysts, e.g. from petrochemistry catalysts, by extraction in supercritical CO2 (scCO2) thanks to complexing polymers bringing the insoluble precious metals into the scCO2 medium. Precious metals are used extensively in applications for catalysis not only in the petrochemistry, but also in the field of automotive (three way catalyst) and in the synthesis of fine chemicals. The scarcity of these metals poses a risk for the European countries which do not have this primary resource.

The pyrometallurgical and hydrometallurgical state of the art techniques developed for the recovery of these metals are energy-intensive, destructive, and generate large volumes of toxic effluents. With our proposed innovative recycling process, the catalytic support and the precious metal remain intact and can be reused as well as the used CO2 and polymer, so that there are no toxic effluents. Due to adjustable solvent properties of scCO2, the dissolved polymer-metal complex can be removed from the CO2 simply by depressurization. So, this new process is eco-efficient and solves a core problem of the state of the art processes.

The SUPERMET project, coordinated by the Charles Gerhardt Institute of Montpellier (ICGM, France), brings together partners from Germany, Romania and France: the Fraunhofer Institute for Chemical Technology (Fraunhofer ICT, Germany), Heraeus Deutschland GmbH & Co KG (Heraeus, Germany), the National Institute for Research and Development in Optoelectronics (INOE, ICIA Cluj-Napoca subsidiary, Romania) and the Supercritical Fluids Innovation Association (IFS, France).

Project objective

The SUPERMET objective is to develop an eco-friendly extraction method to recover precious metals (e.g. Pd, Pt) from spent catalysts using supercritical CO2 (scCO2) and complexing polymers as extractants, generating a minimum of secondary effluents, and operating at mild temperature (T < 100°C). Compared to a pyrometallurgical process (T up to 1600°C), the benefit of a mild temperature is a less energy consuming process. Compared to a hydrometallurgical process, the benefit of the proposed scCO2-based process is to avoid hazardous waste streams.

Estimated results

  • Report on testing of virgin catalysts
  • Report on testing of spent catalyst
  • Report on the pre-treatment of catalysts for the extraction of precious metals
  • Report on ability of synthesized polymers to complex metals
  • Report on the post-treatment of extracted products (precious metals)
  • Product characterization report (for obtained precious metals)
  • Participation / organization of meetings within the project, workshop
  • Results disseminated through publication of ISI articles and participation in international conferences

Obtained results

Press release 14.06.2018

Press release, December 2018

Obtained results Stage 1 – 2018

  • Report on testing of virgin catalysts – first part
  • Report on testing of spent catalysts – first part
  • Report on the pre-treatment of catalysts for the extraction of precious metals – first part
  • Report on ability of synthesized polymers to complex metals – first part
  • Report on testing of catalysts after extraction – first par
  • Participation at Kick-off meeting (Montpellier, France, May 23, 2018)
  • Participation at project meeting (Hanau, Germany, Octomber 17-18, 2018)
  • Visit of project coordinator at ICIA (Cluj-Napoca, Romania, July 23-25, 2018)
  • Organization of video meeting (September 4, 2018)

Project start 01/05/2018

Project end 30/04/2021

Project duration 36 months


Number of Romanian institutions: 1



National funds 489.061,00 RON

Co-financing 0,00 RON

EC funds: 134.289,00 RON

Total budget: 623.350,00 RON



Project manager
CSI Dr. Marin Senila
Str. Donath nr. 67, Cluj-Napoca, Romania
E-mail: marin.senila@icia.ro; icia@icia.ro
Tel/Fax: +40 264 420590 / +40 264 667